Required Machine Learning Engineer II - GenAI Applications
26947
About the team:
This opening is for the GenAI Applications Team within the Data & AI Marketplace department.
The GenAI Applications team is responsible for designing and delivering agentic, ML-powered solutions for some of our most impactful products, including booking search experiences, trip planning, and trip helpfulness. The team builds AI-driven applications and conversational agents, such as chatbots and intelligent assistants, that significantly enhance the end-to-end customer experience.
Role Description:
As a Machine Learning Engineer, you will work closely with experienced engineers and ML scientists to build scalable, production-grade GenAI applications. Your work will focus on designing, training, and deploying ML systems leveraging LLMs,, recommendation systems, and agent-based architectures, using state-of-the-art technologies. These solutions will directly power customer-facing experiences and play a key role in shaping the future of AI-driven travel products.
Key Job Responsibilities and Duties:
Deploying machine learning models: Design, develop and deploy in collaboration with scientists, scalable machine learning models and algorithms that provide content related insights and generative AI applications, ensuring scalability, efficiency, and accuracy.
Evaluating possible architecture solutions by taking into account cost, business requirements, emerging technologies, and technology requirements, like latency, throughput, and scale.
Generative AI Development: Contribute to the development of generative models such as GPT (Generative Pre-trained Transformer) variants or similar architectures for creative content generation, Q&A, chatbots, translation or other innovative applications.
Deployment and integration: Work closely with software engineers to integrate machine learning models into production systems. Ensure seamless deployment and efficient model inference in real-time environments. Collaborate with DevOps to implement effective monitoring and maintenance strategies.
Owning a service end to end by actively monitoring application health and performance, setting and monitoring relevant metrics and acting accordingly when violated.
Maintain clean, scalable code, ensuring reproducibility and easy integration of models into production environments, including CI/CD.
Collaborate with multidisciplinary teams: Collaborate with product managers, data scientists, and analysts to understand business requirements and translate them into machine learning solutions.
Requirements: We are looking for driven MLEs who enjoy solving problems, who initiate solutions and discussions and who believe that any challenge can be scaled with the right mindset and tools.
We have found that people who match the following requirements are the ones who fit us best:
Bachelors or masters degree in computer science, Engineering, Statistics, or a related field.
Minimum of 4 years of experience as a Machine Learning Engineer or a similar role, with a consistent record of successfully delivering ML solutions.
Strong programming skills in languages such as Python and Java.
Experience with cloud frameworks like AWS sagemaker for training, evaluation and serving models using TensorFlow, PyTorch, or scikit-learn.
Experience with big data processing frameworks such, Pyspark, Apache Flink, Snowflake or similar frameworks.
Experience with data at scale using MySQL, Pyspark, Snowflake and similar frameworks.
Demonstrable experience with MySQL, Cassandra, DynamoDB or similar relational/NoSQL database systems.
Deep understanding of machine learning algorithms, statistical models, and data structures.
Experience in deploying large-scale language models like GPT, BERT, or similar architectures - an advantage.
Proficiency in data manipulation, analysis, and visualization using tools like NumPy, pandas, and matplotlib - an advantage.
This position is open to all candidates.